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1. Introduction

Black holes’ quasinormal modes (QNMs) have been an intriguing subject of discussions

in the past decades [1 – 3]. The QNM is believed as characteristic sound of black holes,

which describes the damped oscillations under perturbations in the surrounding geometry

of a black hole with frequencies and damping times of the oscillations entirely fixed by the

black hole parameters. The QNMs of black holes have potential astrophysical interest since

it could lead to the direct identification of the black hole existence through gravitational

wave observation to be realized in the near future [1, 2]. Despite the astrophysical interest,

it has been argued that the black holes’ QNM could be a testing ground for fundamental

physics. Motivated by the discovery of the AdS/CFT correspondence, the investigation

of QNM in anti-de Sitter(AdS) spacetimes became appealing in the past several years.

It was argued that the QNMs of AdS black holes have direct interpretation in term of

the dual conformal field theory(CFT) [3 – 9]. Attempts of using QNMs to investigate the

dS/CFT correspondence have also been given [10]. Recently QNMs in asymptotically flat

spaces have acquired further attention, since the possible connection between the classical

vibrations of a black hole spacetime and various quantum aspects was proposed by relating

the real part of the QNM frequencies to the Barbero-Immirzi(BI) parameter, a factor

introduced by hand in order that loop quantum gravity reproduces correctly the black hole

entropy [11]. The extension has been done in the dS background [12], however in the AdS

black hole spacetime, the direct relation has not been found [13].

Recently further motivation of studying the QNMs has been pointed out in [14] by

arguing that QNMs can reflect the black hole phase transition. By calculating the simplest

possible QNMs of electromagnetic perturbations in the background of the MTZ black hole

obtained in [15], it was claimed in [14] that they found the evidence of the phase transition

in the QNMs behavior for small topological black holes with scalar hair. Further they

claimed that at the critical temperature, the continuously matching of thermodynamical

functions leads the phase transition to be of the second order and they gave the order
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parameter of the phase transition. Their result is interesting, since it might be the first

phenomenon telling us the existence of the phase transition in black hole physics.

Is the obtained signature of phase transition in the QNMs of electromagnetic pertur-

bation just an accident? Does the connection between QNMs and phase transition hold

for more general field perturbations such as the general scalar and gravitational pertur-

bations? Can the QNMs be an effective probe of phase transitions in more general black

hole configurations? In this paper we are trying to answer these questions. We will first

extend the study in [14] by investigating the scalar perturbations around the MTZ black

holes and computing its possible QNMs. MTZ black hole is an exact topological black

hole solution wearing minimally coupled nontrivial scalar field. The study of the scalar

perturbation in this black hole background is interesting. Numerically we will show that

the change of slope of the QNMs again appears as we decrease the value of the horizon

radius below the critical value as that in the electromagnetic perturbation [14] which shows

the phase transition of a vacuum topological black hole to the MTZ black hole with scalar

hair. To examine whether the QNM is an effective probe of the phase transition in general

configurations, we will calculate the QNMs of scalar perturbation of the AdS black holes

with Ricci flat horizons using AdS soliton as the background. It was found that there is

a phase transition analogous to the Hawking-Page transition for AdS black holes [19, 20].

We are going to study whether the signature of this phase transition can be reflected in

the QNMs behavior.

2. The topological black hole with scalar hair

Considering the four-dimensional gravity with negative cosmological constant (Λ = −3/l2)

and a scalar field described by the action

I =

∫

d4x
√
−g

[

R + 6l−2

16πG
− 1

2
∂µφ∂µφ − V (φ)

]

(2.1)

where the potential is given by V (φ) = − 3
4πGl2

sinh2
√

4πG
3 φ, we have the equation of

motion of gravitational field

Gµν + Λgµν = 8πG

(

∇µφ∇νφ − 1

2
gµν(∇φ)2 − gµνV (φ)

)

(2.2)

and the scalar field satisfying

∇2φ − dV

dφ
= 0. (2.3)

The exact solution of topological black hole with the scalar field can be found with the

metric [15]

ds2 =
r(r + 2Gµ)

(r + Gµ)2

[

−
(

r2

l2
−

(

1 +
Gµ

r

)2)

dt2 +

(

r2

l2
−

(

1 +
Gµ

r

)2)−1

dr2 + r2dσ2

]

(2.4)

and the scalar field reads

φ =

√

3

4πG
tanh−1 Gµ

r + Gµ
. (2.5)
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Here dσ2 is the line element of the base manifold Σ, which has negative constant curva-

ture [15]. The constant µ stands for the mass of black hole. The range of r is taken as

r > −2µ for negative mass and r > 0 otherwise to avoid the singularities of the curvature

and the scalar field, where the conformal factor vanishes. The even horizon is given by

r+ =
l

2

(

1 +
√

1 + 4Gµ/l

)

. (2.6)

From eq. (2.5), we can see that the black hole always wears a scalar field for fixed non-

zero mass. When µ = 0, the metric eq. (2.4) stands for a locally AdS spacetime without

the scalar field

ds2 = −
(

r2

l2
− 1

)

dt2 +

(

r2

l2
− 1

)−1

dr2 + r2dσ2. (2.7)

The interesting fact is that the above AdS spacetime can also be obtained from a topological

black hole without scalar field

ds2 = −
(

ρ2

l2
− 1 − 2Gµ

ρ

)

dt2 +

(

ρ2

l2
− 1 − 2Gµ

ρ

)−1

dρ2 + ρ2dσ2, (2.8)

when the mass µ goes to zero. This means that for a given mass, there are two branches of

different black hole solutions. By computing and comparing their free energies, Martinez

et.al. [15] suggested that a second order phase transition exists when the temperature (the

even horizon) crosses a critical value Tc = 1
2πl

(rc = l). When T > Tc (r+ > l), both of

black holes have positive mass. The black hole will absorb the scalar field dress and turn

into the stabler bare one eq. (2.8). When T < Tc (r+ < l), both of black holes have negative

mass. A process of dressing up scalar field will happen for the bare black hole and the

MTZ black hole has higher stability. Koutsoumbas et al. [14] further studied the behavior

of the free energies of both black holes and related it to the order parameter defined by

λ =

{

T0−T
T0+T

, T < T0

0, T > T0.
(2.9)

By computing the simplest possible QNMs of electromagnetic perturbation in the MTZ

and TBH backgrounds, Koutsoumbas et al. [14] showed that near the critical temperature

and for small black holes there is clear evidence in QNMs on the second order phase tran-

sition between the vacuum topological black hole and the MTZ black hole with scalar hair.

It is of interest to generalize their study to QNMs of more general fields perturbations, such

as the scalar field perturbation. We calculate numerically the QNMs of scalar perturbation

for both MTZ and topological black holes and examine the phase transition footprint.

Since the conformal factor in eq. (2.4) does not play an important role, for the conve-

nience of discussion and calculation, we make a conformal transformation to get rid of this

factor and take 8πG = 1, l = 1. In this frame the field equations are [17]

(1 − 1

6
φ2)Gµν − 3gµν =

2

3
∇µφ∇νφ − 1

6
gµν(∇φ)2 +

1

3
gµνφ∇2φ − gµνV (φ) (2.10)

and

∇2φ =
2

3
(−3 + V (φ))φ +

(

1 − 1

6
φ2

)

dV

dφ
(2.11)
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Figure 1: The effective potentials of the scalar perturbations. The left one stands for the MTZ

black hole and the right for the topological back hole, when ξ = 1 in the eq. (2.17) and eq. (2.20).

with

V (φ) =
1

12
φ4. (2.12)

Considering that all physical quantities are calculated in the new frame, the metric and

the scalar field of MTZ black hole are now

ds2 = −
(

r2 −
(

1 +
µ

r

)2)

dt2 +

(

r2 −
(

1 +
µ

r

)2)−1

dr2 + r2dσ2 (2.13)

and

φ =
√

6
µ

r + µ
. (2.14)

Expressing the perturbation of scalar field φ̃ = φ + δφ, we obtain the linear perturbation

equation by varying φ in eq. (2.11)

∇2δφ = δφ

[

1

3
φ

dV

dφ
+

2

3
(V − 3) +

(

1 − 1

6
φ2

)

d2V

dφ2

]

. (2.15)

When we consider the perturbation of the scalar field φ̃ = φ + δφ, in principle the

back-reaction of the metric perturbation will affect the scalar field. However, the effect of

the metric fluctuation on the perturbation of the scalar can be dropped near the critical

point µ = 0. To see this, let us consider a simple case where the perturbed metric is still

of the form (2.13) and the metric function f = r2 − (1 + µ
r
)2 has a small fluctuation as

f̃ = f + δf(t, r). Then linearizing the equation (2.11), we have

∇2δφ +

(

2φ′

r
+ φ′′

)

δf + φ′δf ′ = δφ

[

1

3
φ

dV

dφ
+

2

3
(V − 3) +

(

1 − 1

6
φ2

)

d2V

dφ2

]

. (2.16)
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The last two terms in the left-hand-side of the above equation are contributions from the

back-reaction of the metric perturbation. In our study, since our interest is focused on

the QNMs near the critical point, it is easy to show that the factors of contributions from

metric back-reaction tend to zero when µ → 0 at the critical point by using (2.14). Thus

the back-reaction due to the metric perturbation can be neglected when we focus on the

behavior of the scalar perturbations around the critical point µ = 0. Also near this point,

the first and third terms in the right hand side of the equation can be neglected. As a

result, near the critical point, the expression in the square brackets in the right hand side

of (2.15) turns to be −2. Further, let us notice that the scalar field in the frame (2.13) is

a conformal scalar. This might explain that although the two potentials shown in figure 1

look different, the numerical results of the QNMs for two black holes are quite similar (see

figure 2 and 3). Of course, we may consider a scalar perturbation, which is not related to

the scaler field φ in the black hole solution. In that case, we can obtain similar results for

both black holes.

By the variable separation δφ = 1
r
R(r)Y (Σ)e−iwt, eq. (2.15) is written as

R
{

w2 − VMTZ

}

+ R′ff ′ + R′′f2 = 0,

VMTZ =

(

ξ2 +
1

4

)

f

r2
− f(2 − φ2) +

ff ′

r
. (2.17)

where f = r2 − (1 + µ
r
)2 and ξ2 + 1/4 is the eigenvalue of the harmonic function Y (Σ)

on the hyperbolic space [16]. Taking R(r) = R̃(r)e−iwr∗ with dr∗ = dr/f , we can rewrite

eq. (2.17) into

R̃

{

−
(

ξ2 +
1

4

)

1

r2
+ (2 − φ2) − f ′

r

}

+ R̃′(f ′ − 2iw) + R̃′′f = 0. (2.18)

For the topological black hole eq. (2.8), the scalar perturbation is just described by the

Klein-Gorden equation

∇2δφ = 0 (2.19)

which, under the variable separation δφ = 1
r
R(r)Y (Σ)e−iwt and the transformation R(r) =

R̃(r)e−iwr∗ with dr∗ = dr/g, it can be expressed as

− VTBH

f1
R̃ + R̃′(f ′

1 − 2iw) + R̃′′f1 = 0,

VTBH = f1

[(

ξ2 +
1

4

)

1

r2
+

f ′
1

r

]

. (2.20)

Here the metric coefficient f1 = r2 − 1 − 2µ
r

.

The behaviors of effective potentials of scalar perturbations in the MTZ and topolog-

ical black holes’ backgrounds are shown in figure 1. Compared with the situation in the

topological black hole, the effective potential in the MTZ background does not diverge,

but converges to a nonzero constant at spatial infinity, due to the compensation of the

divergence of the non-zero scalar field in eq. (2.17). For the convergent potential at spatial

infinity, Koutsoumbas et al. [14] imposed the boundary condition that the wave function of
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Figure 2: The QNMs of scalar perturbations in the MTZ black hole. The results are calculated

with ξ = 1 in the eq. (2.18). The right, middle and left figures stand for the cases of r+ = 0.97,

1.00 and 1.03, respectively.

the electromagnetic perturbation vanishes at spatial infinity and employed the numerical

method devised by Horowitz and Hubeny [4] in the MTZ background. In our case, we can

see that the tortoise coordinate r∗ tends to a constant for big r in the MTZ background,

which is similar to that of the Schwarzschild-AdS observed in [18]. This leads e−iwr∗ to

be a constant for big r, which indicates that there is no flux at spacial infinity. As for

R̃(r), we can obtain the approximate solution R̃ ∼ ex·Const. after substituting r with 1/x

in eq. (2.18) and taking the leading terms near x = 0. Therefore R̃ is also a constant at

the spacial infinity x = 0. In other words, the oscillation of the QNMs is frozen, hence the

wave vanishes at the infinity and this constant can be set zero by the definition of QNM.

This makes us confident to employ the method of Horowitz and Hubeny to calculate the

QNMs of the MTZ black hole. For the topological black hole case, Horowitz and Hubeny

method applies naturally.

In the following we present our numerical results of QNMs for the MTZ and topological

black holes when their event horizons cross the critical point rc = 1, e.g. r+ = 0.97, 1, 1.03.

Our results of are shown in figure 2 and figure 3 respectively.

We can see that when r+ < 1, the slope of QNMs is positive and the slope tends

to minus infinity as we approach r+ = 1. When r+ > 1, the QNMs lie on a straight line

with negative slope. The results of the QNMs of scalar perturbation present us very similar

properties to those in the electromagnetic perturbations [14]. As argued in the study of the

electromagnetic perturbation, the change of slope of the QNMs in the scalar perturbations

as we decrease the value of the horizon radius below a critical value reveals the phase

transition of a vacuum topological black hole to the MTZ hole with scalar hair. Our result

presents a support to [14] in the study of the phase transition for the four-dimensional

topological black holes with scalar hair.
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Figure 3: The QNMs of scalar perturbation in the topological black hole. The results are calculated

with ξ = 1 in the eq. (2.20). The right, middle and left figures stand for the cases of r+ = 0.97, 1.00

and 1.03, respectively.

3. AdS black holes with Ricci flat horizons on the AdS soliton background

To investigate whether the QNMs is an effective tool to disclose phase transition in general

black hole configurations, we are going to extend the discussion to phase transitions for

flat AdS black holes in this section. Thermodynamics of AdS black holes with Ricci flat

horizons using the AdS soliton as the thermal background has been investigated in [19, 20].

It was found that there is a phase transition analogous to the Hawking-Page transition.

We will compute the QNMs of the scalar perturbation in the flat AdS black hole and AdS

soliton backgrounds and examine whether the phase transition imprints in the QNMs.

The metric of the AdS black hole with Ricci flat horizon (flat AdS black hole) is [20]

ds2
bh = −Vbdt2b + V −1

b dr2 + r2dφ2
b + r2hijdθidθj, (3.1)

where

Vb = r2 −
kn−1

b

rn−3
(3.2)

with l = 1 for simplicity. hij is a Ricci flat metric and φb is identified with period ηb. kb

is the black hole mass parameter. The horizon is at Vb(rb+) = 0 and the zeros of Vb(r)

are given by rn−1
b+ = kn−1

b . By the analytical continuation tb → iφs and φb → ts, the AdS

soliton is got

ds2
s = −r2dt2s + V −1

s dr2 + Vsdφ2
s + r2hijdθidθj , (3.3)

where Vs is the function eq. (3.2) with ks replacing kb. To meet the requirement of regu-

larity, r ≥ rs+ks, where Vs(rs+) vanishes and φs is identified with the period βs = 4π
3rs+

.

To calculate the energy and to study their thermodynamics, the standard regularization

scheme is used [20], in which these two solutions are matched at a finite cutoff radius R

βb

√

Vb = Rηs, βs

√

VsRηb (3.4)
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Figure 4: The effective potentials of the scalar perturbations. The left one stands for the flat AdS

black hole and the right for the AdS soliton, when k = 1, n = 1 and βs = 1 fixed in the eq. (3.8)

and eq. (3.10).

and then the limit R → ∞ is taken after all quantities are calculated. By comparing the

energies and the Euclidean actions of the two solutions, Surya et.al. [20] suggested a phase

transition for n > 3 analogous to the Hawking-Page transition. If kb ≪ ks, small hot black

hole is unstable and decays to small hot soliton, while large cold black hole is stable with

kb ≫ ks. In case of kb ∼ ks, black hole is in equilibrium with the soliton including cases

when they are large and hot, or cold and small.

In order to see the signature of this phase transition in QNMs, we study the scalar

perturbations in these two solutions with the dimension n = 4. By separating variables

ψbRb(r, t)Φb(φb)Y (θ) in the KG equation ∇2ψb = 0 of the flat AdS black hole eq. (3.1), we

have
Rb

r2

{

1

Φb

d2Φb

dφ2
b

+
1

Y

d2Y

dθ2

}

+

(

2Vb

r
+ V ′

b

)

∂Rb

∂r
+ Vb

∂2Rb

∂r2
− 1

Vb

∂2Rb

∂t2
= 0. (3.5)

The second term of the square bracket just stands for the free motion in the θ direction and

then its eigenvalue is the kinetic energy −k2 with any real number k. The first term also

can be considered as the free motion in the periodic coordinate φb, therefore the eigenvalue

is not a real number but discrete −σ2
b = −(2πn

ηb
)2 (n = 0, 1, 2 . . .). Taking eq. (3.4) at the

infinity R → ∞

σ2
b =

(

2πn

ηb

)2

=

(

2πn

βs

)2

, (3.6)

eq. (3.5) can be written as

−Rb

r2
(σ2

b + k2) +

(

2Vb

r
+ V ′

b

)

∂Rb

∂r
+ Vb

∂2Rb

∂r2
− 1

Vb

∂2Rb

∂t2
= 0. (3.7)
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Setting Rb(t, r) = 1
r
R̃b(r)e

−iwt, the above equation changes into

− R̃b

{

−w2 + Vbh

}

+ V ′
b VbR̃

′
b + V 2

b R̃′′
b = 0,

Vbh =
2VbV

′
b

r
+

Vb

r2
(σ2

b + k2). (3.8)

Near the horizon rb+ = kb, the wave can be expanded as R̃b(r) =
∑

a
(b)
i (r − rb+)ρ+i and

the index ρ = ± iw
3rb+

through the index equation. The effective potential Vbh is shown in

figure 4 which diverges at the spacial infinity. Because there only exists the ingoing wave

near the horizon, the positive sign in ρ is discarded.

In the case of the AdS soliton eq. (3.3), we follow the similar steps to that of the flat

AdS black hole with the variable separation ψs = Rs(r, t)Φs(φs)Y (θ) in KG equation and

obtain

Rs

{

1

Vs

1

Φs

d2Φs

dφ2
s

+
1

r2

1

Y

d2Y

dθ2

}

+

(

2Vs

r
+ V ′

s

)

∂Rs

∂r
+ Vs

∂2Rs

∂r2
− 1

r2

∂2Rs

∂t2
= 0. (3.9)

As above, the eigenvalues of the second and first terms are −k2 and −σ2
s = −(2πn

ηs
)2

(n = 0, 1, 2 . . .) respectively. Hence the radial part of KG equation in the AdS soliton

background is

− R̃s

{

−w2Vs

r2
+ Vsl

}

+ V ′
sVsR̃

′
s + V 2

s R̃′′
s = 0,

Vsl =
2V ′

sVs

r
+ σ2

s +
k2Vs

r2
(3.10)

with Rs(t, r) = 1
r
R̃s(r)e

−iwt and

σ2
s =

(

2πn

ηs

)2

=

(

2πn

βb

)2

. (3.11)

Again, the index ρ in the expansion R̃s(r) =
∑

a
(s)
i (r − rs+)ρ+i is given by ρ = ± σs

3rb+
.

The negative sign is discarded to keep the convergence of the wave near the horizon rs+.

We plot Vsl in figure 4 as the comparison to Vbh. Notice that the real index ρ is the main

difference from that of the flat AdS black hole which indicates there is no wave flux near the

boundary rs+. In the far region, the AdS soliton approaches the AdS spacetime and hence

no wave can flow to the infinity. Therefore, only normal modes exist similar to the form

of stationary waves in the AdS soliton background, once some perturbations are excited.

Our following numerical calculation proves this effect.

We still employ the method of Horowitz and Hubney to calculate the numerical QNMs

of the flat AdS black hole and AdS soliton. We do the computation with k = 1 and n = 1

in eq. (3.8) and eq. (3.10), because the free motion in the θ direction is not of importance

and it is better that the wave number n of the motion in the φα (α = b, s) direction does

not vanish if we consider the more differences between the flat AdS black hole and AdS

soliton in the QNMs. During the computation, we fix the period βs = 1.0 and vary βb

from 0.1 to 10 representing the cases where βb is much smaller to much bigger than βs in

– 9 –
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Figure 5: The QNMs of scalar perturbation in the flat AdS black hole. The results are calculated

with k = 1 and n = 1 in eq. (3.8). The right, middle and left figures in the first row stand for the

cases of βb = 0.1, 0.8 and 1.0 respectively and the right and left ones in the second row for βb = 1.2

and 10

order to satisfy the condition of the phase transition. Figure 5 and table 1 show the QNMs

of the scalar perturbation in the two spacetimes. The QNMs in the flat AdS black hole

always have negative slope in the wR − wI diagrams, distinguished from the situation of

the MTZ-TBH phase transition. As for the AdS soliton background, there only exist the

normal modes as we expected and no special events happen here. We can see that flat

AdS black hole and AdS soliton are staying in different phases as disclosed by the QNMs

behavior, however the phase transition as revealed in [20] occuring around the critical point

βb ∼ βs = 1 does not imprint explicitly in the present QNMs study. More detailed analysis

is called for to reveal more subtle changes in the QNMs due to this phase transition.

4. Conclusions and discussions

Because of its astrophysical and theoretical interests, the QNMs of black holes has been an

intriguing subject of discussions. Calculating the QNMs of electromagnetic perturbations

of the MTZ and topological black holes, Koutsoumbas et al [14] argued that the QNMs

imprints the phase transition of a vacuum topological black hole to the MTZ black hole
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The Normal Modes ω

βb = 0.1 118.869 214.033 308.428 402.572 496.607 590.583

βb = 0.8 19.381 31.108 42.835 54.563 66.293 78.022

βb = 1 16.590 25.921 35.278 44.646 54.019 63.396

βb = 1.2 14.743 22.475 30.250 38.042 45.844 53.652

βb = 10 7.097 7.855 8.662 9.498 10.356 11.228

Table 1: The normal modes of the scalar field in the AdS soliton background with fixed βs = 1.

with scalar hair. To examine whether this interesting result is just an accident, we have

studied the QNMs for the general scalar perturbations. We observed in the numerical

investigation that the slope of the QNMs changes as we decrease the value of the horizon

radius below a critical value, which is in agreement with the behavior observed for the

electromagnetic perturbations [14]. Thus for the four-dimensional topological black holes

with scalar hair, the QNMs really presents the signature of the phase transition.

It would be fair to say that we just have the thermodynamical descriptions of the black

holes’ phase transitions, the physical phenomenons of the phase transitions are not clear.

If the QNMs can probe the phase transition as disclosed in topological black holes with

scalar hair, it would be interesting to ask whether this tool is effective for general black

hole configurations. We have investigated the QNMs of the scalar perturbations in the

backgrounds of flat AdS black holes and AdS solitons. Although it is clear from the QNMs

that flat AdS black holes and AdS solitons are in different phases, it is not clear as observed

in MTZ and topological black holes that near the critical point there is a sudden change

in the QNMs behavior. More detailed careful study of QNMs is called for to disclose more

subtle changes in the QNMs caused by the phase transition.
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